Submitted by yonatan zilpa on
How to Construct an Apollonian Circle?
Proving Equivalency
Let $B$ and $C$ be two different fixed points, and let $A$ be any point such that \begin{equation} \tag{1} \label{eq1} \frac{\overline{AB}}{\overline{AC}}=k, \end{equation} where $k$ is any positive constant, different from one. We start with the following problem
Problem 1
Let $M$ be any point lying on the segment $BC$.
Proof:
Using the parallel axiom we can pass through $B$ a line that is parallel to $\overleftrightarrow{AC}$.
$\Rightarrow$
Since $\frac{\overline{MB}}{\overline{MC}} =k $ (given), we can use similar property (2) to get $\frac{\overline{BD}}{\overline{CA}}=k$, using equality (1) we can replace $\overline{CA}$ with $\frac{1}{k}\overline{BA}$ to get $\overline{BD}=\overline{BA}$. Thus $\angle BAM \cong \angle MDB$ (base angles in isosceles triangle), but $\angle MDB \cong \angle MAC$ (alternating angles between $\overleftrightarrow{DB} \parallel \overleftrightarrow{AC}$), therefor $\angle BAM \cong \angle MAC$ and as a result of this $AM$ bisects $\angle BAC$.$\Leftarrow$
Since $MA$ bisects $\angle BAC$ (given), we get $\angle BAM \cong \angle MAC$. In addition $\angle MDB \cong \angle MAC$ (alternating between parallels), thus $\angle BAM \cong \angle MDB$ and this implies that $\overline{BD}=\overline{AB}$. We can thus replace $\overline{AB}$ in equation (1) with $\overline{BD}$ and get $\frac{\overline{BD}}{\overline{AC}}=k$. From the last equality and similarity property (2) we get $\frac{\overline{MB}}{\overline{MC}}=k$. $■$
The result of problem (1) suggesting that the bisector of angle $\angle BAC$ is itersecting with segment $BC$ at a fixed point $M$. It
doesn't matter whether we move point $A$ or not, as long as equality (1) preserved (for the point $A$), the intersection point $M$
(of $BC$ and the bisector of $\angle BAC$) is not going to move.
We can now bisect the complementary angle of $\angle BAC$ to get the diameter of our Apollonian circle. However we are not done yet, we
still don't know whether the locus of all points $A$, satisfying equation (1), form more than one circle.
Problem 2
Let $L$ be any point lying on the line $\overleftrightarrow{BC}$ and outside of the segment $BC$.
Proof:
Using the parallel axiom we can pass through $L$ a line that is parallel to $\overleftrightarrow{AB}$ and intersect with the ray $\overleftrightarrow{CA}$ at a point $H$.
$\Rightarrow$
From equality (3) and similarity property (4) we get \[ k=\frac{\overline{LB}}{\overline{LC}}=\frac{\overline{LC}-\overline{BC}}{\overline{LC}}=1-\frac{\overline{BC}}{\overline{LC}}, \] thus $\frac{\overline{BC}}{\overline{LC}}=1-k$. We can use this equality and similarity property (4) to get \[ \frac{\overline{AB}}{\overline{HL}}=\frac{\overline{BC}}{\overline{LC}}=\frac{\overline{AC}}{\overline{HC}} =1-k. \] Using these chain of equalities and equalities (1) and (3) we get \[ \begin{array}{lll} \frac{\overline{HA}}{\overline{HL}} &= \frac{\overline{HC}}{\overline{HL}}-\frac{\overline{AC}}{\overline{HL}} \\ &= \frac{(1-k)^{-1}\overline{AC}}{\overline{HL}}-\frac{k^{-1}\overline{AB}}{\overline{HL}} \\ &= (1-k)^{-1}k^{-1}\cdot \frac{\overline{AB}}{\overline{HL}}-k^{-1}\cdot \frac{\overline{AB}}{\overline{HL}} \\ &= (1-k)^{-1}k^{-1}\cdot (1-k)-k^{-1}(1-k) \\ &= k^{-1}\big(1-(1-k)\big) \\ &= 1. \end{array} \] Thus, $\overline{HA}=\overline{HL}$ and this implies that $\angle CLH \cong \angle HAL$ (the base angles in isosceles triangle are congruent). But, $\angle LAB \cong \angle CLH$ (alternating angles between $\overleftrightarrow{LH} \parallel \overleftrightarrow{AB}$), therefor $\angle LAB\cong HAL$, and indeed, segment $AL$ bisects $\angle HAB$.$\Leftarrow$
Since $\angle LAB\cong \angle ALH$ (alternate angles between $\overleftrightarrow{HL}\parallel\overleftrightarrow{AB}$), we get $\overline{HL}=\overline{HA}$. Let $u$ be the proportionality constant of property (4), then \[ \begin{array}{lll} u^{-1} &=\frac{\overline{HL}}{\overline{AB}} =\frac{\overline{HA}}{\overline{AB}} \\ &=\frac{\overline{HC}}{k\cdot\overline{AC}}- \frac{\overline{AC}}{k\cdot\overline{AC}} \\ &= \frac{1}{k}\left(\frac{\overline{HC}}{\overline{AC}}-1\right) \\ &= \frac{1}{k}\left(u^{-1}-1\right). \end{array} \] Thus $u^{-1}=\frac{1}{k}\left(u^{-1}-1\right)$ which give us $u^{-1}=\frac{1}{1-k}$ or $u=1-k$. We may now use similarity property (4) to get \[ \begin{array}{ll} \frac{\overline{LB}}{\overline{LC}} = \frac{\overline{LC}}{\overline{LC}} - \frac{\overline{BC}}{\overline{LC}} &= 1-\frac{\overline{BC}}{\overline{LC}} \\ &= 1-u =1-(1-k)= k. \quad ■ \end{array} \] From the last equality we get $1-\frac{\overline{BC}}{\overline{LC}}=k$, thus \begin{equation} \tag{5} \overline{LC}=\frac{\overline{BC}}{1-k}. \end{equation} Using similarity (2) we get $\frac{\overline{BM}}{\overline{MC}}=k$ or $\overline{BM}=\overline{MC}\cdot k$, in addition, $\overline{BC}=\overline{BM}+\overline{MC}$, thus $\overline{BC}=\overline{MC}\cdot k+\overline{MC}$ or \begin{equation} \tag{6} \overline{MC}=\frac{\overline{BC}}{1+k} \end{equation} From equalities (5) and (6) we get \[ \begin{array}{ll} \overline{ML} &=\overline{LC}-\overline{MC} \\\\ &=\frac{\overline{BC}}{1-k}-\frac{\overline{BC}}{1+k} \\\\ &=\left(\frac{2k}{1-k^2}\right)\cdot \overline{BC}. \end{array}\] The length $\overline{ML}$ is the diameter of our Apollonian circle, thus the radius of our Apollonian circle is equal to \[ \left(\frac{k}{1-k^2}\right)\cdot \overline{BC}. \] Notice that $k$ was chosen as a positive real number that is less than one. In the case where $k$ is greater than one the radius is equal to $ \left(\frac{k}{k^2-1}\right)\cdot \overline{BC}$. In any case the length of the radius of an Apollonian circle with positive proportion $k\not = 1$ is equal to \[ \displaystyle \left(\frac{k}{\left|1-k^2\right|}\right)\cdot \overline{BC}. \]- Log in to post comments
Comments
ShanaRex replied on Permalink
Wo kann ich Estradiol Estrace generika sicher kaufen?
ShanaRex replied onSun, 08/29/2021 - 00:46 Permalink
Mirtazapina Remeron 30mg comprar rápido
brianawo69 replied onSun, 08/29/2021 - 01:35 Permalink
Nude Sex Pics, Sexy Naked Women, Hot Girls Porn
miltonym4 replied onSun, 08/29/2021 - 07:21 Permalink
Sexy teen photo galleries
ShanaRex replied onSun, 08/29/2021 - 08:00 Permalink
Wo bekomme ich 2021 Diclofenac 50mg sicher kaufen Schweiz?
ShanaRex replied onSun, 08/29/2021 - 13:00 Permalink
Sildenafil 800mg kaufen ohne zollprobleme mit bitcoin bezahlen
isabelleyx11 replied onSun, 08/29/2021 - 15:57 Permalink
Sexy teen photo galleries
ShanaRex replied onSun, 08/29/2021 - 17:17 Permalink
Sildenafil 100mg bestellen mit bitcoin
ShanaRex replied onSun, 08/29/2021 - 20:42 Permalink
Donde a la orden Catapres Clonidina 100 mcg al mejor precio
coreyey1 replied onSun, 08/29/2021 - 21:07 Permalink
Free Porn Galleries - Hot Sex Pictures
ShanaRex replied onSun, 08/29/2021 - 22:32 Permalink
Nitrofurazone 25 mg generika online kaufen ohne rezept
isabelleyx11 replied onMon, 08/30/2021 - 01:48 Permalink
Hot galleries, thousands new daily.
oq60 replied onMon, 08/30/2021 - 02:54 Permalink
Sexy photo galleries, daily updated pics
samanthaqt11 replied onMon, 08/30/2021 - 04:00 Permalink
Free Porn Pictures and Best HD Sex Photos
ce60 replied onMon, 08/30/2021 - 05:41 Permalink
New hot project galleries, daily updates
ShanaRex replied onMon, 08/30/2021 - 09:15 Permalink
Tadora 20 mg bestellen ohne zollprobleme
ShanaRex replied onMon, 08/30/2021 - 15:02 Permalink
Wo kann ich Cefaclor {250|500]mg her?
miltonym4 replied onMon, 08/30/2021 - 16:27 Permalink
Girls of Desire: All babes in one place, crazy, art
shaunaua4 replied onMon, 08/30/2021 - 16:56 Permalink
Nude Sex Pics, Sexy Naked Women, Hot Girls Porn
ShanaRex replied onMon, 08/30/2021 - 16:59 Permalink
Symmetrel Amantadina donde comprar fiable
ShanaRex replied onMon, 08/30/2021 - 17:14 Permalink
Comprar Kamagra Soft Sildenafilo 100mg sin receta ahora
Sapsanjah replied onTue, 08/31/2021 - 03:28 Permalink
Boom casino!!!
ShanaRex replied onTue, 08/31/2021 - 03:36 Permalink
Flibanserin Flibanserina puedo comprar online
howardyp18 replied onTue, 08/31/2021 - 03:49 Permalink
Sexy teen photo galleries
Forexwouctup replied onTue, 08/31/2021 - 05:02 Permalink
Start play casino - new
ShanaRex replied onTue, 08/31/2021 - 05:53 Permalink
Dilatrend 3,12 mg gГјnstig kaufen ohne rezept online apotheke
ShanaRex replied onTue, 08/31/2021 - 06:02 Permalink
Wo kann ich 2021 Acetazolamide 250 mg in der Schweiz?
Timothylem replied onTue, 08/31/2021 - 06:28 Permalink
2021
NormanIncof replied onTue, 08/31/2021 - 08:24 Permalink
...
ShanaRex replied onTue, 08/31/2021 - 09:36 Permalink
Baclofen Lioresal 10mg billig kaufen ohne rezept Schweiz
RichardInoro replied onTue, 08/31/2021 - 09:49 Permalink
Microsoft slots!!!
miltonym4 replied onTue, 08/31/2021 - 12:00 Permalink
Free Porn Galleries - Hot Sex Pictures
ShanaRex replied onTue, 08/31/2021 - 15:42 Permalink
Wo bekomme ich günstig Duricef Cefadroxil her?
DressBor replied onTue, 08/31/2021 - 22:58 Permalink
Prime slots...
EROBubmins replied onWed, 09/01/2021 - 00:39 Permalink
Quick slots - new
coreyey1 replied onWed, 09/01/2021 - 01:26 Permalink
New super hot photo galleries, daily updated collections
ShanaRex replied onWed, 09/01/2021 - 01:55 Permalink
Lansoprazole 30mg billig kaufen via internet Schweiz
PublisherOn replied onWed, 09/01/2021 - 02:24 Permalink
Slots sega...
coreyey1 replied onWed, 09/01/2021 - 02:39 Permalink
Free Porn Pictures and Best HD Sex Photos
pripaphind replied onWed, 09/01/2021 - 02:42 Permalink
Play money casino - new
miltonym4 replied onWed, 09/01/2021 - 02:54 Permalink
Hot galleries, thousands new daily.
NYCMSsweri replied onWed, 09/01/2021 - 04:18 Permalink
Casino free games to play - new
angelicarm60 replied onWed, 09/01/2021 - 04:59 Permalink
Hot photo galleries blogs and pictures
GlennHek replied onWed, 09/01/2021 - 05:23 Permalink
Slots me...
FloydSit replied onWed, 09/01/2021 - 06:35 Permalink
Wing slots!!!
ShanaRex replied onWed, 09/01/2021 - 07:19 Permalink
Wo kann ich Clomid 50mg generika ohne rezept kaufen?
labedroomEmity replied onWed, 09/01/2021 - 07:36 Permalink
Free online casino slot play 2021
ShanaRex replied onWed, 09/01/2021 - 09:24 Permalink
Donde a la orden Celecoxib sin receta entrega rápida
coreyey1 replied onWed, 09/01/2021 - 10:25 Permalink
New hot project galleries, daily updates
ShanaRex replied onWed, 09/01/2021 - 11:53 Permalink
Wo bekomme ich Nortrilen 25mg rezeptfrei kaufen?
Pages