Submitted by yonatan zilpa on
How to Construct an Apollonian Circle?
Proving Equivalency
Let $B$ and $C$ be two different fixed points, and let $A$ be any point such that \begin{equation} \tag{1} \label{eq1} \frac{\overline{AB}}{\overline{AC}}=k, \end{equation} where $k$ is any positive constant, different from one. We start with the following problem
Problem 1
Let $M$ be any point lying on the segment $BC$.
Proof:
Using the parallel axiom we can pass through $B$ a line that is parallel to $\overleftrightarrow{AC}$.
$\Rightarrow$
Since $\frac{\overline{MB}}{\overline{MC}} =k $ (given), we can use similar property (2) to get $\frac{\overline{BD}}{\overline{CA}}=k$, using equality (1) we can replace $\overline{CA}$ with $\frac{1}{k}\overline{BA}$ to get $\overline{BD}=\overline{BA}$. Thus $\angle BAM \cong \angle MDB$ (base angles in isosceles triangle), but $\angle MDB \cong \angle MAC$ (alternating angles between $\overleftrightarrow{DB} \parallel \overleftrightarrow{AC}$), therefor $\angle BAM \cong \angle MAC$ and as a result of this $AM$ bisects $\angle BAC$.$\Leftarrow$
Since $MA$ bisects $\angle BAC$ (given), we get $\angle BAM \cong \angle MAC$. In addition $\angle MDB \cong \angle MAC$ (alternating between parallels), thus $\angle BAM \cong \angle MDB$ and this implies that $\overline{BD}=\overline{AB}$. We can thus replace $\overline{AB}$ in equation (1) with $\overline{BD}$ and get $\frac{\overline{BD}}{\overline{AC}}=k$. From the last equality and similarity property (2) we get $\frac{\overline{MB}}{\overline{MC}}=k$. $■$
The result of problem (1) suggesting that the bisector of angle $\angle BAC$ is itersecting with segment $BC$ at a fixed point $M$. It
doesn't matter whether we move point $A$ or not, as long as equality (1) preserved (for the point $A$), the intersection point $M$
(of $BC$ and the bisector of $\angle BAC$) is not going to move.
We can now bisect the complementary angle of $\angle BAC$ to get the diameter of our Apollonian circle. However we are not done yet, we
still don't know whether the locus of all points $A$, satisfying equation (1), form more than one circle.
Problem 2
Let $L$ be any point lying on the line $\overleftrightarrow{BC}$ and outside of the segment $BC$.
Proof:
Using the parallel axiom we can pass through $L$ a line that is parallel to $\overleftrightarrow{AB}$ and intersect with the ray $\overleftrightarrow{CA}$ at a point $H$.
$\Rightarrow$
From equality (3) and similarity property (4) we get \[ k=\frac{\overline{LB}}{\overline{LC}}=\frac{\overline{LC}-\overline{BC}}{\overline{LC}}=1-\frac{\overline{BC}}{\overline{LC}}, \] thus $\frac{\overline{BC}}{\overline{LC}}=1-k$. We can use this equality and similarity property (4) to get \[ \frac{\overline{AB}}{\overline{HL}}=\frac{\overline{BC}}{\overline{LC}}=\frac{\overline{AC}}{\overline{HC}} =1-k. \] Using these chain of equalities and equalities (1) and (3) we get \[ \begin{array}{lll} \frac{\overline{HA}}{\overline{HL}} &= \frac{\overline{HC}}{\overline{HL}}-\frac{\overline{AC}}{\overline{HL}} \\ &= \frac{(1-k)^{-1}\overline{AC}}{\overline{HL}}-\frac{k^{-1}\overline{AB}}{\overline{HL}} \\ &= (1-k)^{-1}k^{-1}\cdot \frac{\overline{AB}}{\overline{HL}}-k^{-1}\cdot \frac{\overline{AB}}{\overline{HL}} \\ &= (1-k)^{-1}k^{-1}\cdot (1-k)-k^{-1}(1-k) \\ &= k^{-1}\big(1-(1-k)\big) \\ &= 1. \end{array} \] Thus, $\overline{HA}=\overline{HL}$ and this implies that $\angle CLH \cong \angle HAL$ (the base angles in isosceles triangle are congruent). But, $\angle LAB \cong \angle CLH$ (alternating angles between $\overleftrightarrow{LH} \parallel \overleftrightarrow{AB}$), therefor $\angle LAB\cong HAL$, and indeed, segment $AL$ bisects $\angle HAB$.$\Leftarrow$
Since $\angle LAB\cong \angle ALH$ (alternate angles between $\overleftrightarrow{HL}\parallel\overleftrightarrow{AB}$), we get $\overline{HL}=\overline{HA}$. Let $u$ be the proportionality constant of property (4), then \[ \begin{array}{lll} u^{-1} &=\frac{\overline{HL}}{\overline{AB}} =\frac{\overline{HA}}{\overline{AB}} \\ &=\frac{\overline{HC}}{k\cdot\overline{AC}}- \frac{\overline{AC}}{k\cdot\overline{AC}} \\ &= \frac{1}{k}\left(\frac{\overline{HC}}{\overline{AC}}-1\right) \\ &= \frac{1}{k}\left(u^{-1}-1\right). \end{array} \] Thus $u^{-1}=\frac{1}{k}\left(u^{-1}-1\right)$ which give us $u^{-1}=\frac{1}{1-k}$ or $u=1-k$. We may now use similarity property (4) to get \[ \begin{array}{ll} \frac{\overline{LB}}{\overline{LC}} = \frac{\overline{LC}}{\overline{LC}} - \frac{\overline{BC}}{\overline{LC}} &= 1-\frac{\overline{BC}}{\overline{LC}} \\ &= 1-u =1-(1-k)= k. \quad ■ \end{array} \] From the last equality we get $1-\frac{\overline{BC}}{\overline{LC}}=k$, thus \begin{equation} \tag{5} \overline{LC}=\frac{\overline{BC}}{1-k}. \end{equation} Using similarity (2) we get $\frac{\overline{BM}}{\overline{MC}}=k$ or $\overline{BM}=\overline{MC}\cdot k$, in addition, $\overline{BC}=\overline{BM}+\overline{MC}$, thus $\overline{BC}=\overline{MC}\cdot k+\overline{MC}$ or \begin{equation} \tag{6} \overline{MC}=\frac{\overline{BC}}{1+k} \end{equation} From equalities (5) and (6) we get \[ \begin{array}{ll} \overline{ML} &=\overline{LC}-\overline{MC} \\\\ &=\frac{\overline{BC}}{1-k}-\frac{\overline{BC}}{1+k} \\\\ &=\left(\frac{2k}{1-k^2}\right)\cdot \overline{BC}. \end{array}\] The length $\overline{ML}$ is the diameter of our Apollonian circle, thus the radius of our Apollonian circle is equal to \[ \left(\frac{k}{1-k^2}\right)\cdot \overline{BC}. \] Notice that $k$ was chosen as a positive real number that is less than one. In the case where $k$ is greater than one the radius is equal to $ \left(\frac{k}{k^2-1}\right)\cdot \overline{BC}$. In any case the length of the radius of an Apollonian circle with positive proportion $k\not = 1$ is equal to \[ \displaystyle \left(\frac{k}{\left|1-k^2\right|}\right)\cdot \overline{BC}. \]- Log in to post comments
Comments
miltonym4 replied on Permalink
Dirty Porn Photos, daily updated galleries
ShanaRex replied onFri, 12/17/2021 - 11:37 Permalink
Pletal online bestellen ohne rezept
ShanaRex replied onFri, 12/17/2021 - 13:08 Permalink
Tetraciclina donde comprar pago mastercard
ShanaRex replied onFri, 12/17/2021 - 14:35 Permalink
Donde para ordenar Extra Super Avana 200/60mg online
Jannakank replied onFri, 12/17/2021 - 15:25 Permalink
Benicar Olmesartan como comprar en línea
Jannakank replied onFri, 12/17/2021 - 17:17 Permalink
Indapamide 1,5mg bestellen online in der Schweiz
ShanaRex replied onFri, 12/17/2021 - 18:04 Permalink
Beloc online bestellen ohne rezept in der Schweiz
ShanaRex replied onSat, 12/18/2021 - 01:02 Permalink
Generika Novosil in der online apotheke bestellen Schweiz
vq60 replied onSat, 12/18/2021 - 04:01 Permalink
Test, just a test
ShanaRex replied onSat, 12/18/2021 - 05:19 Permalink
Nolvadex como puedo comprar en farmacia online El Salvador
ShanaRex replied onSat, 12/18/2021 - 06:37 Permalink
Eulexin MOINS CHER SANS ORDONNANCE!
ShanaRex replied onSat, 12/18/2021 - 07:08 Permalink
ACHAT!-> Terramycin où acheter en france!
davery60 replied onSat, 12/18/2021 - 07:19 Permalink
Big Ass Photos - Free Huge Butt Porn, Big Booty Pics
ShanaRex replied onSat, 12/18/2021 - 07:57 Permalink
Generika Esidrix in der online apotheke bestellen sofort
vq60 replied onSat, 12/18/2021 - 08:09 Permalink
Girls of Desire: All babes in one place, crazy, art
ShanaRex replied onSat, 12/18/2021 - 12:09 Permalink
Comprar Esidrix Hydrochlorothiazide sin receta ahora
ShanaRex replied onSat, 12/18/2021 - 15:17 Permalink
Indinavir 400mg billig kaufen ohne risiko Schweiz
Kemppikl replied onSat, 12/18/2021 - 16:40 Permalink
Железнодорожные перевозки
isabelleyx11 replied onSat, 12/18/2021 - 17:00 Permalink
My new hot project
Jannakank replied onSat, 12/18/2021 - 19:51 Permalink
Farmacia online donde comprar Mebendazole rápido
aureliavy1 replied onSat, 12/18/2021 - 20:49 Permalink
Free Porn Galleries - Hot Sex Pictures
isabelleyx11 replied onSat, 12/18/2021 - 21:34 Permalink
Scandal porn galleries, daily updated lists
coreyey1 replied onSat, 12/18/2021 - 23:28 Permalink
Teen Girls Pussy Pics. Hot galleries
ShanaRex replied onSat, 12/18/2021 - 23:31 Permalink
Hytrin kaufen rezeptfrei online
Jannakank replied onSun, 12/19/2021 - 00:24 Permalink
Tadalafil in der online apotheke kaufen sicher
ShanaRex replied onSun, 12/19/2021 - 04:13 Permalink
VENTE! Cefpodoxime Vantin où commander France
alfredohu60 replied onSun, 12/19/2021 - 05:21 Permalink
Hot galleries, thousands new daily.
Jannakank replied onSun, 12/19/2021 - 06:04 Permalink
Wo kann ich Alfacip generika günstig kaufen?
edwinaqc1 replied onSun, 12/19/2021 - 06:14 Permalink
Sexy teen photo galleries
miltonym4 replied onSun, 12/19/2021 - 06:45 Permalink
New hot project galleries, daily updates
miltonym4 replied onSun, 12/19/2021 - 08:19 Permalink
Hot teen pics
ShanaRex replied onSun, 12/19/2021 - 10:27 Permalink
vente Tadora 20 mg France Dieuze
ShanaRex replied onSun, 12/19/2021 - 10:51 Permalink
Actigall 300mg où en commander en france!
ShanaRex replied onSun, 12/19/2021 - 14:17 Permalink
Dulcolax Bisacodyl 5mg como comprar con visa USA
KennethBuict replied onSun, 12/19/2021 - 23:34 Permalink
Действующие на данный момент сезонные и тематические каталоги.
Jannakank replied onMon, 12/20/2021 - 00:47 Permalink
Wo bekomme ich 2022 Bisoprolol ohne rezept kaufen Schweiz?
isabelleyx11 replied onMon, 12/20/2021 - 01:07 Permalink
Scandal porn galleries, daily updated lists
Jannakank replied onMon, 12/20/2021 - 02:14 Permalink
Wo kann ich Diclofenac 100mg ohne rezept?
kerryoi11 replied onMon, 12/20/2021 - 09:46 Permalink
Sexy photo galleries, daily updated collections
ShanaRex replied onMon, 12/20/2021 - 13:50 Permalink
Suprax Cefixima comprar sin receta barato México
Jannakank replied onMon, 12/20/2021 - 17:32 Permalink
Voveran 50 mg in der online apotheke bestellen
vq60 replied onMon, 12/20/2021 - 18:47 Permalink
Young Heaven - Naked Teens & Young Porn Pictures
Jannakank replied onMon, 12/20/2021 - 19:01 Permalink
Comprar generico Clorpromazina sin receta y pagar con visa
Jannakank replied onMon, 12/20/2021 - 20:08 Permalink
Cómo realizar un pedido Xalatan Latanoprost entrega rápida
ShanaRex replied onMon, 12/20/2021 - 20:39 Permalink
Comprar generico Effexor Xr de confianza
Jannakank replied onTue, 12/21/2021 - 01:44 Permalink
Wo kann ich 2022 Paroxetine 12,5mg günstig kaufen?
ShanaRex replied onTue, 12/21/2021 - 04:04 Permalink
Lamotrigina Lamictal 100 mg como comprar sin receta por internet
lizaly2 replied onTue, 12/21/2021 - 04:05 Permalink
New project started to be available today, check it out
ShanaRex replied onTue, 12/21/2021 - 06:57 Permalink
Wo bekomme ich sicher Cefaclor Cefaclor in der Schweiz?
jackpj1 replied onTue, 12/21/2021 - 07:26 Permalink
Girls of Desire: All babes in one place, crazy, art
Pages